Respuesta :
2x³ + 14x² + 4x + 28
2(x³) + 2(7x²) + 2(2x) + 2(14)
2(x³ + 7x² + 2x + 14)
2(x²(x) + x²(7) + 2(x) + 2(7))
2(x²(x + 7) + 2(x + 7))
2(x² + 2)(x + 7)
The answer is C.
2(x³) + 2(7x²) + 2(2x) + 2(14)
2(x³ + 7x² + 2x + 14)
2(x²(x) + x²(7) + 2(x) + 2(7))
2(x²(x + 7) + 2(x + 7))
2(x² + 2)(x + 7)
The answer is C.
Answer:
The complete factor is
[tex]2x^3+14x^2+4x+28=2(x+7)(x^2+2)[/tex]
Step-by-step explanation:
Given the polynomial
[tex]2x^3+14x^2+4x+28[/tex]
we have to factor the above polynomial completely.
Polynomial: [tex]2x^3+14x^2+4x+28[/tex]
Taking 2 common from all the terms
[tex]2(x^3+7x^2+2x+14)[/tex]
[tex]2[x^2(x+7)+2(x+7)][/tex]
Taking (x+7) common
[tex]2(x+7)(x^2+2)[/tex]
Option C is correct.