Respuesta :

Answer:

Option C (1, 0)

Step-by-step explanation:

We have a system with the following equations:

[tex]y = x ^ 2-1\\\\y = 2x-2[/tex]

The first equation is a parabola.

The second equation is a straight line

To solve the system, substitute the second equation in the first and solve for x.

[tex]2x-2 = x ^ 2 -1[/tex]

Simplify

[tex]x ^ 2-2x + 1 = 0[/tex]

You must search for two numbers that when you add them, obtain as a result -2 and multiplying both results in 1.

These numbers are -1 and -1

Therefore

[tex]x ^ 2-2x + 1= (x-1)(x-1)\\\\x ^ 2-2x + 1= (x-1)^2=0[/tex]

Finally the solutions are

[tex]x = 1\\y =0[/tex]

Answer:

The correct answer option is C. (1,0).

Step-by-step explanation:

We are given the following equations and we are to find its solution:

[tex]y=x^2-1[/tex]

[tex]y=2x-2[/tex]

So we will check each point if its the solution.

A. (-1, 0):

[tex]y=x^2-1[/tex] ---> [tex]0=(-1)^2-1[/tex] ---> [tex]0=0[/tex]

[tex]y=2x-2[/tex] ---> [tex]0=2(-1)-2[/tex] ---> [tex]0\neq -4[/tex]

B. (-2, 0):

[tex]y=x^2-1[/tex] ---> [tex]0=(-2)^2-1[/tex] ---> [tex]0\neq 3[/tex]

[tex]y=2x-2[/tex] ---> [tex]0=2(-2)-2[/tex] ---> [tex]0\neq -6[/tex]

C. (1, 0):

[tex]y=x^2-1[/tex] ---> [tex]0=(1)^2-1[/tex] ---> [tex]0=0[/tex]

[tex]y=2x-2[/tex] ---> [tex]0=2(1)-2[/tex] ---> [tex]0=0[/tex]

D. (0, 1):

[tex]y=x^2-1[/tex] ---> [tex]1=(0)^2-1[/tex] ---> [tex]1\neq -1[/tex]

[tex]y=2x-2[/tex] ---> [tex]1=2(0)-2[/tex] ---> [tex]1\neq -2[/tex]