The ka of acetic acid (hc2h3o2) is 1.8 ⋅ 10-5. what is the ph at 25.0 °c of an aqueous solution that is 0.100 m in acetic acid? the ka of acetic acid (hc2h3o2) is 1.8 10-5. what is the ph at 25.0 °c of an aqueous solution that is 0.100 m in acetic acid? +2.87 -2.87 -11.13 +6.61 +11.13

Respuesta :

Answer:

2.872.

Explanation:

  • For weak acids: [H⁺] = √(Ka.C).

∴ [H⁺] = √(Ka.C) = √(1.8 x 10⁻⁵)(0.1 M) = 1.342 x 10⁻³.

∵ pH = - log[H⁺].

∴ pH = - log(1.342 x 10⁻³) = 2.872.

Answer : The pH of the solution is, 2.87

Solution :  Given,

Concentration (c) = 0.100 M

Acid dissociation constant = [tex]k_a=1.8\times 10^{-5}[/tex]

The equilibrium reaction for dissociation of [tex]CH_3COOH[/tex] is,

                           [tex]CH_3COOH\rightleftharpoons CH_3COO^-+H^+[/tex]

initially conc.         c                       0              0

At eqm.              [tex]c(1-\alpha)[/tex]                [tex]c\alpha[/tex]             [tex]c\alpha[/tex]

First we have to calculate the concentration of value of dissociation constant [tex](\alpha)[/tex].

Formula used :

[tex]k_a=\frac{(c\alpha)(c\alpha)}{c(1-\alpha)}[/tex]

Now put all the given values in this formula ,we get the value of dissociation constant [tex](\alpha}[/tex].

[tex]1.8\times 10^{-5}=\frac{(0.1\alpha)(0.1\alpha)}{0.1(1-\alpha)}[/tex]

By solving the terms, we get

[tex]\alpha=0.0133[/tex]

Now we have to calculate the concentration of hydrogen ion.

[tex][H^+]=c\alpha=0.1\times 0.0133=1.33\times 10^{-3}M[/tex]

Now we have to calculate the pH.

[tex]pH=-\log [H^+][/tex]

[tex]pH=-\log (1.33\times 10^{-3})[/tex]

[tex]pH=2.87[/tex]

Therefore, the pH of the solution is, 2.87