Respuesta :

y = 1/(4p) * x^2

y = 1/(4*-8)*x^2

y = -1/32*x^2

Answer:

The standard form of the equation of the parabola is [tex]y=-\frac{x^2}{-32}[/tex].

Step-by-step explanation:

The general form of a parabola is

[tex](x-h)^2=4p(y-k)[/tex]

Where, (h,k) is vertex, (h,k+p) is focus and y=k-p is directrix.

Focus of the parabola is (0, -8).

[tex](h,k+p)=(0,-8)[/tex]

[tex]h=0[/tex]

[tex]k+p=-8[/tex]        .... (1)

Directrix of the parabola is

[tex]k-p=8[/tex]           .... (2)

On adding (1) and (2) we get

[tex]2k=0[/tex]

[tex]k=0[/tex]

Put this value in equation (1).

[tex]0+p=-8[/tex]

[tex]p=-8[/tex]

The value of p is -8.

Substituent h=0,k=0 and p=-8 in general form of parabola.

[tex](x-0)^2=4(-8)(y-0)[/tex]

[tex]x^2=-32y[/tex]

Divide both sides by -32.

[tex]\frac{x^2}{-32}=y[/tex]

Therefore the standard form of the equation of the parabola is [tex]y=-\frac{x^2}{-32}[/tex].