Respuesta :

Answer:

[tex]\boxed{y=h(x)=4x^2-5}[/tex]

Step-by-step explanation:

Nonrigid transformations  are those causing a distortion or a change in the shape of the original graph. Stretching a graph are part of nonrigid transformations. On the other hand, rigid transformations  are those where the basic shape of the graph is unchanged. Translations are part of rigid transformations.

If [tex]y=f(x)[/tex] then [tex]g(x)=cf(x)[/tex] represents a vertical stretch if [tex]c>1[/tex]. In this case [tex]c=4[/tex].

Since [tex]y=g(x)=x^2[/tex], the:

  • [tex]g(x)=4x^2[/tex] represents that the function is vertically stretched by a factor of 4

For translating a graph k units downward we have:

[tex]\bullet \ Vertical \ shift \ c \ units \ \mathbf{downward}: \ h(x)=f(x)-k[/tex]

Therefore, [tex]k=5[/tex] and translating the previous graph 5 units downward is:

[tex]\boxed{y=h(x)=4x^2-5}[/tex]

Finally, this [tex]h(x)[/tex] is the function we are looking for.