Respuesta :

Answer: [tex]x=\frac{12}{7}[/tex]

Step-by-step explanation:

Remember the logarithms properties:

[tex]log(m)-log(n)=log(\frac{m}{n})\\\\b^{log_b(a)}=a[/tex]

Then,simplifying:

[tex]log_{8}(\frac{x}{-2x+4}) = log_{8}(3)[/tex]

Apply base 8 to boths sides and then solve for "x":

[tex]8^{log_{8}(\frac{x}{-2x+4})}=8^{log_{8}(3)}\\\\\frac{x}{-2x+4}=3\\\\x=3(-2x+4)\\\\x=-6x+12\\x+6x=12\\7x=12\\\\x=\frac{12}{7}[/tex]

Answer:

x = 12/7.

Step-by-step explanation:

log8 x - log8 (-2x + 4) = log8 3

Using the law of logs, log a - log b = log (a/b):-

log8  [x / (-2x + 4)]  =  log8 3

Taking antilogs of both sides:

x / (-2x + 4) = 3

x = -6x + 12

7x = 12

x = 12/7

(answer).