Respuesta :
Answer: [tex]x=\frac{12}{7}[/tex]
Step-by-step explanation:
Remember the logarithms properties:
[tex]log(m)-log(n)=log(\frac{m}{n})\\\\b^{log_b(a)}=a[/tex]
Then,simplifying:
[tex]log_{8}(\frac{x}{-2x+4}) = log_{8}(3)[/tex]
Apply base 8 to boths sides and then solve for "x":
[tex]8^{log_{8}(\frac{x}{-2x+4})}=8^{log_{8}(3)}\\\\\frac{x}{-2x+4}=3\\\\x=3(-2x+4)\\\\x=-6x+12\\x+6x=12\\7x=12\\\\x=\frac{12}{7}[/tex]
Answer:
x = 12/7.
Step-by-step explanation:
log8 x - log8 (-2x + 4) = log8 3
Using the law of logs, log a - log b = log (a/b):-
log8 [x / (-2x + 4)] = log8 3
Taking antilogs of both sides:
x / (-2x + 4) = 3
x = -6x + 12
7x = 12
x = 12/7
(answer).