Respuesta :
Answer: [tex]y=2x+11[/tex]
Step-by-step explanation:
The slope-intercept form of a line is:
[tex]y=mx+b[/tex]
Where m is the slope and b is the intersection of the line with the y-axis.
Find the slope with:
[tex]m=\frac{y_2-y_1}{x_2-x_1}\\\\m=\frac{17-25}{3-7}\\\\m=\frac{-8}{-4}\\\\m=2[/tex]
Substitute the slope and one of the given points into [tex]y=mx+b[/tex] and solve for "b":
[tex]17=2(3)+b\\\\17=6+b\\b=11[/tex]
Then you get:
[tex]y=2x+11[/tex]
Answer:
[tex]y=2x+11[/tex]
Step-by-step explanation:
The slope is found using the formula:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Plug in the values to get;
[tex]m=\frac{25-17}{7-3}=2[/tex]
[tex]m=2[/tex]
The slope-intercept form is given by;
[tex]y=mx+c[/tex]
Plug in the slope
[tex]y=2x+c[/tex]
Use (3,17) to find the value of c.
[tex]17=2(3)+c[/tex]
[tex]17=6+c[/tex]
c=17-6=11
The slope-intercept form is;
[tex]y=2x+11[/tex]