contestada

In slope-intercept form, what is the equation of the line passing through the points (3,17) and (7,25)

Respuesta :

Answer: [tex]y=2x+11[/tex]

Step-by-step explanation:

The slope-intercept form of a line is:

[tex]y=mx+b[/tex]

Where m is the slope and b is the intersection of the line with the y-axis.

Find the slope with:

[tex]m=\frac{y_2-y_1}{x_2-x_1}\\\\m=\frac{17-25}{3-7}\\\\m=\frac{-8}{-4}\\\\m=2[/tex]

Substitute the slope and one of the given points into  [tex]y=mx+b[/tex] and solve for "b":

[tex]17=2(3)+b\\\\17=6+b\\b=11[/tex]

Then you get:

 [tex]y=2x+11[/tex]

Answer:

[tex]y=2x+11[/tex]

Step-by-step explanation:

The slope is found using the formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Plug in the values to get;

[tex]m=\frac{25-17}{7-3}=2[/tex]

[tex]m=2[/tex]

The slope-intercept form is given by;

[tex]y=mx+c[/tex]

Plug in the slope

[tex]y=2x+c[/tex]

Use (3,17) to find the value of c.

[tex]17=2(3)+c[/tex]

[tex]17=6+c[/tex]

c=17-6=11

The slope-intercept form is;

[tex]y=2x+11[/tex]