Respuesta :
Answer:
[tex]x^{16}y^{22}[/tex]
Step-by-step explanation:
The given expression is
[tex]\frac{(x^6y^8)^3}{x^2y^2}[/tex]
Recall and apply: [tex](a^m)^n=a^{mn}[/tex] to the numerator to obtain;
[tex]\frac{x^{6\times 3}y^{8\times 3}}{x^2y^2}[/tex]
[tex]\frac{x^{18}y^{24}}{x^2y^2}[/tex]
Recall that; [tex]\frac{a^m}{a^n}=a^{m-n}[/tex]
We apply this property to obtain;
[tex]x^{18-2}y^{24-2}=x^{16}y^{22}[/tex]
Answer:
[tex](x^{16}y^{22})[/tex]
Step-by-step explanation:
Given in the question an expression,
[tex]\frac{(x^6 y^8)^3}{x^2 y^2}[/tex]
Step 1
The "power rule" tells us that to raise a power to a power, just multiply the exponents.
[tex](x^{n})^{m} =x^{nm}[/tex]
[tex]\frac{(x^{6x3}y^{8x3})}{x^2 y^2}[/tex]
[tex]\frac{(x^{18}y^{24})}{x^2 y^2}[/tex]
Step 2
The "quotient rule" tells us that we can divide two powers with the same base by subtracting the exponents.
[tex]\frac{x^{n} }{x^{m}}=x^{n-m}[/tex]
[tex](x^{18-2}y^{24-2})[/tex]
[tex](x^{16}y^{22})[/tex]