Respuesta :

Answer:

[tex]x^{16}y^{22}[/tex]

Step-by-step explanation:

The given expression is

[tex]\frac{(x^6y^8)^3}{x^2y^2}[/tex]

Recall and apply: [tex](a^m)^n=a^{mn}[/tex] to the numerator to obtain;

[tex]\frac{x^{6\times 3}y^{8\times 3}}{x^2y^2}[/tex]

[tex]\frac{x^{18}y^{24}}{x^2y^2}[/tex]

Recall that; [tex]\frac{a^m}{a^n}=a^{m-n}[/tex]

We apply this property to obtain;

[tex]x^{18-2}y^{24-2}=x^{16}y^{22}[/tex]

Answer:

[tex](x^{16}y^{22})[/tex]

Step-by-step explanation:

Given in the question an expression,

[tex]\frac{(x^6 y^8)^3}{x^2 y^2}[/tex]

Step 1

The "power rule" tells us that to raise a power to a power, just multiply the exponents.

[tex](x^{n})^{m} =x^{nm}[/tex]

[tex]\frac{(x^{6x3}y^{8x3})}{x^2 y^2}[/tex]

[tex]\frac{(x^{18}y^{24})}{x^2 y^2}[/tex]

Step 2

The "quotient rule" tells us that we can divide two powers with the same base by subtracting the exponents.

[tex]\frac{x^{n} }{x^{m}}=x^{n-m}[/tex]

[tex](x^{18-2}y^{24-2})[/tex]

[tex](x^{16}y^{22})[/tex]