Respuesta :

Answer:

[tex]y=\frac{1}{2}x+\frac{1}{2}[/tex]

Step-by-step explanation:

The 2 points in red are (5, 3) & (-5, -2). These are (x_1,y_1) & (x_2,y_2), respectively.

The equation of a line given two points are  given by the formula  [tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

We simply plug in x_1, y_1, x_2, y_2 into the formula and find the equation of the line:

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\\y-3=\frac{-2-3}{-5-5}(x-5)\\y-3=\frac{-5}{-10}(x-5)\\y-3=\frac{1}{2}(x-5)\\y-3=\frac{1}{2}x-\frac{5}{2}\\y=\frac{1}{2}x-\frac{5}{2}+3\\y=\frac{1}{2}x+\frac{1}{2}\\[/tex]

Answer:

x-2y=-1

Step-by-step explanation:

The given given line passes through;

[tex](-5,-2)[/tex] and [tex](5,3)[/tex]

The slope of the line is given by;

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

We plug in the values to get;

[tex]m=\frac{3--2}{5--5}=\frac{1}{2}[/tex]

The equation is given by

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y--2=\frac{1}{2}(x--5)[/tex]

[tex]2(y+2)=x+5[/tex]

2y+4=x+5

The eqation is x-2y=-1