The radius of the earth's orbit around the sun (assumed to be circular) is 1.50 108 km, and the earth travels around this orbit in 365 days. (a) What is the magnitude of the orbital velocity of the earth in m/s? (b) What is the radial acceleration of the earth toward the sun in m/s2? (c) Repeat parts (a) and (b) for the motion of the planet Uranus (orbit radius = 2.87 109 km, orbital period = 84.02 years).

Respuesta :

(a) 29,905 m/s

The magnitude of the Earth's orbital velocity around the Sun is given by the circumference of the orbit divided by the time taken:

[tex]v=\frac{2\pi r}{T}[/tex]

where

[tex]r=1.50 \cdot 10^8 km = 1.50 \cdot 10^{11} m[/tex] is the orbital radius

[tex]T=365 d \cdot 24 h/d \cdot 60 min/h \cdot 60 s/min =3.15 \cdot 10^7 s[/tex] is the time taken for the Earth to complete one orbit

Substituting into the first equation, we find the orbital velocity:

[tex]v=\frac{2\pi (1.50\cdot 10^{11} m)}{(3.15\cdot 10^7 s)}=29,905 m/s [/tex]

(b) [tex]5.96\cdot 10^{-3} m/s^2[/tex]

The radial acceleration of the Earth toward the sun, which corresponds to the centripetal acceleration, is

[tex]a=\frac{v^2}{r}[/tex]

where

v = 29,905 m/s is the orbital velocity

[tex]r=1.50 \cdot 10^8 km = 1.50 \cdot 10^{11} m[/tex] is the orbital radius

Substituting into the equation, we have

[tex]a=\frac{(29,905 m/s)^2}{(1.50\cdot 10^{11} m)}=5.96\cdot 10^{-3} m/s^2[/tex]

(c) 6,801 m/s

For planet Uranus, we have

[tex]r=2.87 \cdot 10^9 km = 2.87 \cdot 10^{12} m[/tex] is the orbital radius

[tex]T=84.02 y \cdot 365 d/y \cdot 24 h/d \cdot 60 min/h \cdot 60 s/min =2.65 \cdot 10^9 s[/tex] is the orbital period

So, the orbital velocity is

[tex]v=\frac{2\pi (2.87\cdot 10^{12} m)}{(2.65\cdot 10^9 s)}=6,801 m/s [/tex]

(d) [tex]1.61\cdot 10^{-5} m/s^2[/tex]

For planet Uranus, we have

v = 6,801 m/s is the orbital velocity

[tex]r=2.87 \cdot 10^9 km = 2.87 \cdot 10^{12} m[/tex] is the orbital radius

So, the radial acceleration is

[tex]a=\frac{(6,801 m/s)^2}{(2.87\cdot 10^{12} m)}=1.61\cdot 10^{-5} m/s^2[/tex]

The acceleration of the earth is [tex]1.992\times 10^{11} \rm\ m/s^2[/tex] while the acceleration of the Uranus is [tex]1.6138\times 10^{-5} \rm\ m/s^2[/tex].

Given to us

The radius of the earth's orbit around the sun (assumed to be circular), r = 1.50 x 10⁸ km = [tex]1.50\times 10^{11} \rm\ m[/tex]

Number of days taken by earth to cover the distance, t = 365 days = [tex]365\times 24\times 60\times 60 = 31.536\times10^6[/tex]

What is the magnitude of the orbital velocity of the earth in m/s?

We know the magnitude of the earth's orbital velocity around the sun is given as the circumference of the orbit divided by the time taken,

[tex]\rm Velocity= \dfrac{2\pi r}{time}[/tex]

Substitute the values,

[tex]\rm Velocity= \dfrac{2 \times \pi \times 1.50 \times10^{11}}{31.536\times 10^6}[/tex]

velocity of the earth, v = 29885.77486 m/s

Thus, the velocity of the earth is 29885.77486 m/s.

What is the radial acceleration of the earth toward the sun in m/s²?

The radial acceleration of the earth towards the sun, corresponding to centripetal acceleration,

[tex]a = \dfrac{v^2}{r}[/tex]

[tex]a = \dfrac{29885.77486^2}{1.50\times 10^{11}}\\\\a = 1.992\times 10^{11} \rm\ m/s^2[/tex]

Thus, the acceleration of the earth is [tex]1.992\times 10^{11} \rm\ m/s^2[/tex].

What is the magnitude of the orbital velocity of the Uranus in m/s?

We know the magnitude of Uranus' orbital velocity around the sun is given as the circumference of the orbit divided by the time taken,

[tex]\rm Velocity= \dfrac{2\pi r}{time}[/tex]

Substitute the values,

[tex]\rm Velocity= \dfrac{2 \times \pi \times 2.87 \times10^{12}}{84.02\times 365\times24\times3600}[/tex]

velocity of the Uranus, v = 6805.695 m/s

Thus, the Uranus of the earth is 6805.695 m/s.

What is the radial acceleration of the Uranus toward the sun in m/s²?

The radial acceleration of the Uranus towards the sun, corresponding to centripetal acceleration,

[tex]a = \dfrac{v^2}{r}[/tex]

[tex]a = \dfrac{6805.695 ^2}{2.87\times 10^{12}}\\\\a = 1.6138\times 10^{-5} \rm\ m/s^2[/tex]

Thus, the acceleration of the Uranus is [tex]1.6138\times 10^{-5} \rm\ m/s^2[/tex].

Learn more about Centripetal acceleration:

https://brainly.com/question/17689540