Respuesta :
Start with
[tex]x^2-2x-4=-3x+9[/tex]
Move the right hand side to the left and simplify:
[tex]x^2-2x-4+3x-9=0 \iff x^2+x-13=0[/tex]
You can find the two solutions to this equation using the quadratic formula:
[tex]x_{1,2} = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} = \dfrac{-1\pm\sqrt{1+52}}{2}[/tex]
So, the two solutions are
[tex]x_{1,2} = \dfrac{-1\pm\sqrt{53}}{2}[/tex]
Answer: the x-coordinates of the intersection points of the graphs of y = x2 – 2x – 4 and y = –3x + 9
Step-by-step explanation: