Answer:
[tex]x=53\°[/tex]
Step-by-step explanation:
step 1
Find the measure of arc DF
we know that
[tex]arc\ DF+arc\ EF=180\°[/tex] ----> Equation A
Because the diameter DE divide the circle into two equal parts
we know that
The inscribed angle measures half that of the arc comprising
[tex]m<OEF=\frac{1}{2}(arc\ DF)[/tex]
substitute the given value
[tex]32\°=\frac{1}{2}(arc\ DF)[/tex]
[tex]64\°=(arc\ DF)[/tex]
[tex]arc\ DF=64\°[/tex]
step 2
Find the measure of arc EF
[tex]arc\ DF+arc\ EF=180\°[/tex]
substitute the measure of arc DF
[tex]64\°+arc\ EF=180\°[/tex]
[tex]arc\ EF=180\°-64\°=116\°[/tex]
step 3
Find the value of x
we have
[tex]arc\ EF=116\°[/tex]
[tex]arc\ EF=(2x+10)\°[/tex]
equate the equations
[tex](2x+10)\°=116\°[/tex]
[tex]2x=116\°-10\°=106\°[/tex]
[tex]x=53\°[/tex]