The photon energies used in different types of medical x-ray imaging vary widely, depending upon the application. Single dental x rays use photons with energies of about 25 keV. The energies used for x-ray microtomography, a process that allows repeated imaging in single planes at varying depths within the sample, is 2.5 times greater.

What are the wavelengths of the x rays used for these two purposes?

Respuesta :

1. Single dental x-rays: [tex]5.0\cdot 10^{-11}m[/tex]

The energy of the photon is

[tex]E=25 keV = 25,000 eV[/tex]

Using the conversion factor

[tex]1 eV=1.6\cdot 10^{-19} J[/tex]

we can convert it into Joules:

[tex]E=(25,000 eV)(1.6\cdot 10^{-19}J/eV)=4\cdot 10^{-15} J[/tex]

The relationship between photon energy and wavelength is

[tex]\lambda=\frac{hc}{E}[/tex]

where

[tex]h=6.63\cdot 10^{-34} Js[/tex] is the Planck constant

[tex]c=3\cdot 10^8 m/s[/tex] is the speed of light

E is the energy

Substituting into the formula, we find

[tex]\lambda=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{4\cdot 10^{-15} J}=5.0\cdot 10^{-11}m[/tex]

2. Microtomography: [tex]2.0\cdot 10^{-11} m[/tex]

The energy of these photons is 2.5 times greater, so

[tex]E=(2.5)(4\cdot 10^{-15} J)=1\cdot 10^{-14} J[/tex]

And by applying the same formula used at point 1, we find the corresponding wavelength:

[tex]\lambda=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{1\cdot 10^{-14} J}=2.0\cdot 10^{-11}m[/tex]