Which of the following is an odd function?

Answer:
f(x) = -x is odd
Step-by-step explanation:
A function f is odd if f(-x) = -f(x) for all x in the domain of f. Then, let's check each of the functions.
1. f(x) = x^3 + 5x^2 + x
f(-x) = (-x)^3 + 5(-x)^2 + (-x) = -x^3 + 5x^2 - x
-f(x) = -(x^3 + 5x^2 + x) = -x^3 - 5x^2 - x
Given that f(-x) ≠ -f(x). The function f is not odd.
2. f(x) = sqrt(x)
f(-x) = sqrt(-x) (Imaginary number)
-f(x) = -sqrt(x)
Given that f(-x) ≠ -f(x). The function f is not odd.
3. f(x) = x^2 + x
f(-x) = (-x)^2 -x = x^2 - x
-f(x) = -x^2 - x
Given that f(-x) ≠ -f(x). The function f is not odd.
4. f(x) = -x
f(-x) = - (-x) = x
-f(x) = -(-x) = x
Given that f(-x) = -f(x). The function f is odd.
Answer with Step-by-step explanation:
A function f is odd if:
f(-x)= -f(x) for all x in the domain of f
1. f(x)=[tex]x^3+5x^2+x[/tex]
f(-x)=[tex](-x)^3+5(-x)^2-x[/tex]
= [tex]-x^3+5x^2-x[/tex]
-f(x)=[tex]-x^3-5x^2-x[/tex]
f(-x) ≠ -f(x)
So, function is not odd
2. f(x)=√x
f(-x)=√(-x)
= i√x
-f(x)= -√x
f(-x) ≠ -f(x)
So, function is not odd
3. f(x)=[tex]x^2+x[/tex]
f(-x)=[tex](-x)^2-x[/tex]
=[tex]x^2-x[/tex]
-f(x)= [tex]-x^2-x[/tex]
f(-x) ≠ -f(x)
So, function is not odd
4. f(x)= -x
f(-x) = -(-x)
=x
-f(x)=x
f(-x) = -f(x)
So, function is odd