Respuesta :
Answer:
[tex]f(x) = 6x -12[/tex]
Step-by-step explanation:
We must write the function of the line in the form [tex]f (x) = mx + b[/tex]
First calculate the slope m
[tex]m =\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]y_2 = 18\\y_1 =6\\x_2=5\\x_1=3[/tex]
[tex]m= \frac{18-6}{5-3} = 6[/tex]
Then
[tex]f(x) = 6x +b[/tex]
To have b replaced a point in the function
[tex]f(3)=6 = 6(3) +b\\\\6-18= b\\\\b=-12[/tex]
Finally the function is
[tex]f(x) = 6x -12[/tex]
ANSWER
[tex]f(x) = 6x - 12[/tex]
EXPLANATION
The given line passes through the points (3, 6) and (5, 18).
The slope of this line given by:
[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]
We plug in the points to get,
[tex]m = \frac{18 - 6}{5 - 3} = \frac{12}{2} = 6[/tex]
The equation is given by
[tex]y-y_1=m(x-x_1)[/tex]
We plug in the point and the slope to get,
[tex]y - 6 = 6(x - 3)[/tex]
[tex]y - 6 = 6x - 18[/tex]
[tex] y = 6x - 18 + 6[/tex]
[tex]y = 6x - 12[/tex]
Using function notation, we have
[tex]f(x) = 6x - 12[/tex]