Your eyes have three different types of cones with maximum absorption at 437 nm, 533 nm, and 564 nm.What photon energies correspond to these wavelengths? (answer in eV)

Respuesta :

Answers:

The energy [tex]E[/tex] of a photon is given by the following formula:

[tex]E=h.f[/tex]   (1)

Where:

[tex]h=4.136(10)^{-15} eV.s[/tex] is the Planck constant

[tex]f[/tex] is the frequency in hertz [tex]Hz=s^{-1}[/tex]

Now, the frequency has an inverse relation with the wavelength [tex]\lambda[/tex]:

[tex]f=\frac{c}{\lambda}[/tex]   (2)

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum

Substituting (2) in (1):

[tex]E=\frac{hc}{\lambda}[/tex]   (3)

Knowing this, let's begin with the answers:

437 nm

For [tex]\lambda=437nm=437(10)^{-9}m[/tex]

[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{437(10)^{-9}m}[/tex]  

[tex]E=\frac{1.24(10)^{-6}eV.m }{437(10)^{-9}m}[/tex]  

[tex]E=2.837eV[/tex]

533 nm

For [tex]\lambda=533nm=533(10)^{-9}m[/tex]

[tex]E=\frac{1.24(10)^{-6}eV.m }{533(10)^{-9}m}[/tex]  

[tex]E=2.327eV[/tex]

564 nm

For [tex]\lambda=564nm=564(10)^{-9}m[/tex]

[tex]E=\frac{1.24(10)^{-6}eV.m }{564(10)^{-9}m}[/tex]  

[tex]E=2.2eV[/tex]