Respuesta :

Answer:

[tex]\frac{1}{3}e^{x/3}[/tex]

Step-by-step explanation:

Derivative

[tex]\frac{1}{3}e^{x/3}[/tex]

Since, the derivative of e^x is e^x and e^(yx) is ye^(yx)

Answer:

[tex]\frac{1}{3}e^{\frac{x}{3}}[/tex]

Step-by-step explanation:

The given expression is

[tex]e^{\frac{x}{3} }[/tex]

Let

[tex]y=e^{\frac{x}{3} }[/tex]

We can rewrite this as

[tex]y=e^{\frac{1}{3}x }[/tex]

This is of the form

[tex]y=e^{ax}[/tex]

The derivative of exponential functions in this form is given by;

[tex]\frac{dy}{dx}=ae^{ax}[/tex]

This implies that;

[tex]\frac{dy}{dx}=\frac{1}{3}e^{\frac{x}{3}}[/tex]

Hence the derivative of the given function is

[tex]\frac{1}{3}e^{\frac{x}{3}}[/tex]