jclm
contestada

The vertex of an angle measuring 32° is in the exterior of a circle and its sides are secants of the circle. If the sum of the measures of the intercepted arcs is 180°, find the measure of each intercepted arc.

Respuesta :

Answer:

The measures of the intercepts arcs are [tex]58\°[/tex]  and [tex]122\°[/tex]

Step-by-step explanation:

we know that

The measurement of the outer angle is the semi-difference of the arcs which comprises

Let

x,y -----> the intercepts arcs

[tex]x+y=180\°[/tex] ----> equation A

[tex]32\°=\frac{1}{2}(x-y)[/tex]

[tex]64\°=(x-y)[/tex]

[tex]x=64\°+y[/tex] ------> equation B

substitute equation B in equation A

[tex](64\°+y)+y=180\°[/tex]

[tex]64\°+2y=180\°[/tex]

[tex]2y=180\°-64\°[/tex]

[tex]y=116\°/2=58\°[/tex]

Find the value of x

[tex]x=64\°+58\°=122\°[/tex]

therefore

The measures of the intercepts arcs are [tex]58\°[/tex]  and [tex]122\°[/tex]