Respuesta :

Answer:

[tex] C.676.01 \: {in}^{3} [/tex]

step-by-step explanation :

The volume of the composite solid = volume of the cuboid + volume of the rectangular pyramid

Volume of the cuboid

[tex] = L \times B \times H[/tex]

where

[tex]L = 9 \: inches \\ B = 9 \: inches \\ H = 5 \: inches[/tex]

By substitution,

[tex] \implies \: V = 5 \times 9 \times 9[/tex]

[tex]\implies \: V = 405 \: {in}^{3} [/tex]

Volume of rectangular pyramid

[tex] = \frac{1}{3} \times base \: area \times height[/tex]

[tex]\implies \: V = \frac{1}{3} \times \:( L \times B ) \times \: H[/tex]

[tex] L = 9 \: inches \\ B = 9 \: inches \\ s= 11 \: inches[/tex]

We use the Pythagoras Theorem, to obtain,

h²+4.5²=11²

h²=11²-4.5²

h=√100.75

h=10.03

By substitution,

[tex]\implies \: V = \frac{1}{3} \times \:( 9 \times 9 ) \times \:10.0374[/tex]

we simplify to obtain

[tex]\implies \: V =271.0098 \: {in}^{3} [/tex]

Hence the volume of the the composite solid

[tex]=676.01\: {in}^{3} [/tex]

Answer:

The correct answer is option C.  676.01 in^3

Step-by-step explanation:

It is given a composite solid.

Total volume = volume of cuboid + volume of pyramid

To find the volume of cuboid

Volume of cuboid = Base area * height

Base area = side * side = 9 * 9

Volume = 9 * 9 * 5 = 405 in^3

To find the volume of pyramid

Before that we have to find the height of pyramid

Height² = Hypotenuse² - base² = 11² - 4.5² = 100.75

Height = √100.75 = 10.03

Volume of pyramid = 1/3(base area * height)

  = 1/3(9 * 9 * 10.03) = 271.01 in^3

To find the volume of solid

Volume of solid =  volume of cuboid + volume of pyramid

 = 405 + 271.01 = 676.01 in^3

Therefore the correct answer is option C.   676.01 in^3