What’s the correct answer

Answer:
79°
Step-by-step explanation:
Using the cosine rule in ΔABC
cosA = [tex]\frac{b^2+c^2-a^2}{2bc}[/tex]
with a = 14, b = 11, c = 11, then
cosA = [tex]\frac{11^2+11^2-14^2}{2(11)(11)}[/tex] = [tex]\frac{46}{242}[/tex]
A = [tex]cos^{-1}[/tex]([tex]\frac{46}{242}[/tex]) ≈ 79°
Answer:
(A) 79°
Step-by-step explanation:
We can use law of cosine.
c²=a²+b²-2ab*cos(α)
14²=11²+11²-2*11*11*cos(A)
14²=2*11²-2*11²cos(A)
14²-2*11²=-2*11²cos(A)
-46= - 2*(121)*cos(A)
cos(A)= 46/242
arccos(46/242)=79°