Respuesta :

Answer:

83

Step-by-step explanation:

(2((sqrt)(5))+3((sqrt)(7)))^2

is the same as every individual term inside to the power of 2

(2^2 x (root 5 )^2 + 3^2 x (root 7)^2)

any root squared will become the number inside the root by itself, i.e sqrt of 8^2 will become 8

((4x5) + (9x7))

= 20+63

=83

Answer:

83 + 12[tex]\sqrt{35}[/tex]

Step-by-step explanation:

Using the rules of radicals

• [tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

• [tex]\sqrt{a}[/tex] × [tex]\sqrt{a}[/tex] = a

Given

(2[tex]\sqrt{5}[/tex] + 3[tex]\sqrt{7}[/tex])²

= (2[tex]\sqrt{5}[/tex] + 3[tex]\sqrt{7}[/tex])(2[tex]\sqrt{5}[/tex] + 3[tex]\sqrt{7}[/tex])

Expand factors using FOIL

= (2[tex]\sqrt{5}[/tex])² + 6[tex]\sqrt{35}[/tex] + 6[tex]\sqrt{35}[/tex] + (3[tex]\sqrt{7}[/tex])²

=20 + 12[tex]\sqrt{35}[/tex] + 63

= 83 + 12[tex]\sqrt{35}[/tex]