Answer:
B.[tex]26^{\circ}[/tex]
Step-by-step explanation:
We are given that a triangle ABD, BE is perpendicular to AD and angle EBD is congruent to angle CBD.
[tex]\angleABE=52^{\circ}[/tex]
We have to find the measure of angle EDB.
Let [tex]\angle EBD=x[/tex]
Then, [tex]\angle CBD=x[/tex] because angle EBD is congruent to angle CBD.
[tex]\angle ABE+\angle EBD+\angle CBD=180^{\circ}[/tex] (linear sum)
[tex]52+x+x=180[/tex]
[tex]2x=180-52=128[/tex]
[tex]x=\frac{128}{2}=64^{\circ}[/tex]
In triangle EBD
[tex]\angle BED=90^{\circ}[/tex]
[tex]\angle EBD=64^{\circ][/tex]
[tex]\angle EBD+\angle BED+\angle EDB=180^{\circ}[/tex] (sum of angles of triangle )
Substitute the values then we get
[tex]64+90+\angle EDB=180[/tex]
[tex]154+\angle EDB=180[/tex]
[tex]\angle EDB=180-154=26^{\circ}[/tex]
Hence, [tex]m\angle EDB=26^{\circ}[/tex]