Respuesta :

I think it would be “B”

Answer:

Option B.

Step-by-step explanation:

Given information: [tex]m\angle A=48^{\circ},\angle E=90^{\circ},\angle EMS=59^{\circ}[/tex].

According to the angle sum property of a triangles, the sum of interior angles of a triangle is 180°.

Apply angle sum property on triangle AEJ.

[tex]\angle A+\angle E+\angle J=180^{\circ}[/tex]

[tex]48^{\circ}+90^{\circ}+\angle J=180^{\circ}[/tex]

[tex]138^{\circ}+\angle J=180^{\circ}[/tex]

Subtract 138 from both sides.

[tex]\angle J=180^{\circ}-138^{\circ}[/tex]

[tex]\angle J=42^{\circ}[/tex]

The measure of angle J is 42°.

According to exterior angle property, the sum of two interior angles of a triangle is equal to the third exterior angle.

Apply exterior angle property on triangle JMS.

[tex]\angle EJA+\angle JSM=\angle EMS[/tex]

[tex]42^{\circ}+\angle JSM=59^{\circ}[/tex]

Subtract 42 from both sides.

[tex]\angle JSM=59^{\circ}-42^{\circ}[/tex]

[tex]\angle JSM=17^{\circ}[/tex]

The measure of ∠JSM is 17°.

Therefore, the correct option is B.