What is the true solution In 20+In 5=2 In x?

Answer:
x = 10
Step-by-step explanation:
Using the rules of logarithms
• log x + log y ⇔ log(xy)
• log[tex]x^{n}[/tex] ⇔ n log x
• log x = log y ⇒ x = y
Given
ln20 + ln5 = 2 lnx , then
ln(20 × 5) = ln[tex]x^{2}[/tex]
ln 100 = ln[tex]x^{2}[/tex], hence
x² = 100 ( take the square root of both sides )
x = 10
The true solution is x = 10.
Given:
ln 20 + ln 5 = 2 ln x
We have to solve for x.
we know, by the property of logarithm.
⇒ ln A + ln B = ln (A×B)
⇒ n ln A = ln Aⁿ
⇒ If, ln A = ln B then A = B.
Now, we will solve for x.
⇒ ln 20 + ln 5 = 2 ln x
⇒ ln (20 × 5) = ln x²
⇒ ln 100 = ln x²
⇒ x² = 100
Taking square root on both the sides, we get:
⇒ x = 10
Therefore, the true solution for the given equation is x = 10.
Learn more about the Logarithms here: https://brainly.com/question/14413095
#SPJ2