Respuesta :

Answer:

[tex]x_{1} =-3 +\sqrt{14} \\\\x_{2} =-3 -\sqrt{14}[/tex]

Step-by-step explanation:

[tex]x^{2}[/tex]+6x-5=0

we divide the coefficient of the X by half :

in this case: 6/2 = 3 , then we do the following

The result obtained is raised to square power:  3^2=9

we sum and subtract by 9 to maintain the balance of the equation:

[tex]x^{2}[/tex]+6x+9-9-5=0

we have:

[tex](x+3)^{2}[/tex]-9-5=0

[tex](x+3)^{2}[/tex] = 14

lets apply square root on both sides of the equation:

[tex]\sqrt{(x+3)^{2}}=\sqrt{14}[/tex]

we know:

[tex]\sqrt{a^{2}} = abs(a)[/tex]

so we have:

abs(x+3)=[tex]\sqrt{14}[/tex]

from where two solutions are obtained

[tex]x_{1} + 3 =\sqrt{14} \\\\x_{2} + 3 =-\sqrt{14}[/tex]

finally we have:

[tex]x_{1} =-3 +\sqrt{14} \\\\x_{2} =-3 -\sqrt{14}[/tex]

Answer:

x=−3±√14

Hope this helps!