Respuesta :

gmany

Answer:

[tex]\large\boxed{\dfrac{156}{125}\approx1.2}[/tex]

Step-by-step explanation:

Method 1:

[tex]\sum\limits_{n=1}^4\left(\dfrac{1}{5}\right)^{n-1}\\\\for\ n=1\\\\\left(\dfrac{1}{5}\right)^{1-1}=\left(\dfrac{1}{5}\right)^0=1\\\\for\ n=2\\\\\left(\dfrac{1}{5}\right)^{2-1}=\left(\dfrac{1}{5}\right)^1=\dfrac{1}{5}\\\\for\ n=3\\\\\left(\dfrac{1}{5}\right)^{3-1}=\left(\dfrac{1}{5}\right)^2=\dfrac{1}{25}\\\\for\ n=4\\\\\left(\dfrac{1}{5}\right)^{4-1}=\left(\dfrac{1}{5}\right)^3=\dfrac{1}{125}[/tex]

[tex]\sum\limits_{n=1}^4\left(\dfrac{1}{5}\right)^{n-1}=1+\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}=\dfrac{125}{125}+\dfrac{25}{125}+\dfrac{5}{125}+\dfrac{1}{125}=\dfrac{156}{125}[/tex]

Method 2:

[tex]\sum\limits_{n=1}^4\left(\dfrac{1}{5}\right)^{n-1}\to a_n=\left(\dfrac{1}{5}\right)^{n-1}\\\\\text{The formula of a sum of terms of a geometric series:}\\\\S_n=a_1\cdot\dfrac{1-r^n}{1-r}\\\\r-\text{common ratio}\to r=\dfrac{a_{n+1}}{a_n}\\\\a_{n+1}=\left(\dfrac{1}{5}\right)^{n+1-1}=\left(\dfrac{1}{5}\right)^n\\\\r=\dfrac{\left(\frac{1}{5}\right)^n}{\left(\frac{1}{5}\right)^{n-1}}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\r=\left(\dfrac{1}{5}\right)^{n-(n-1)}=\left(\dfrac{1}{5}\right)^{n-n+1}=\left(\dfrac{1}{5}\right)^1=\dfrac{1}{5}[/tex]

[tex]a_1=\left(\dfrac{1}{5}\right)^{1-1}=\left(\dfrac{1}{5}\right)^0=1[/tex]

[tex]\text{Substitute}\ a_1=1,\ n=4,\ r=\dfrac{1}{5}:\\\\S_4=1\cdot\dfrac{1-\left(\frac{1}{5}\right)^4}{1-\frac{1}{5}}=\dfrac{1-\frac{1}{625}}{\frac{4}{5}}=\dfrac{624}{625}\cdot\dfrac{5}{4}=\dfrac{156}{125}[/tex]