Respuesta :

For this case we have the following quadratic equation:

[tex]6w ^ 2-7w-20 = 0[/tex]

Where:

[tex]a = 6\\b = -7\\c = -20[/tex]

Its roots will be given by:

[tex]w = \frac {-b \pm \sqrt {b ^ 2-4 (a) (c)}} {2 (a)}\\w = \frac {- (- 7) \pm \sqrt {(- 7) ^ 2-4 (6) (- 20)}} {2 (6)}\\w = \frac {7 \pm \sqrt {49 + 480}} {12}\\w = \frac {7 \pm \sqrt {529}} {12}\\w = \frac {7 \pm23} {12}[/tex]

The roots are:

[tex]w_ {1} = \frac {7 + 23} {12} = \frac {30} {12} = \frac {15} {6} = \frac {5} {2}\\w_ {2} = \frac {7-23} {12} = \frac {-16} {12} = - \frac {8} {6} = - \frac {4} {3}[/tex]

Answer:

[tex]w_ {1} = \frac {5} {2}\\w_ {2} = - \frac {4} {3}[/tex]

ANSWER

[tex]{w} = \frac{5}{2}\: or \: w = - \frac{4}{3} [/tex]

EXPLANATION

We want to solve the equation:

[tex]6 {w}^{2} - 7w - 20 = 0[/tex]

Let us use the method of factorization

Split the middle term;

[tex]6 {w}^{2} -1 5w + 8w- 20 = 0[/tex]

Factor by grouping:

[tex]3w( {w} - 5)w + 4(2w- 5) = 0[/tex]

Factor further,

[tex]( {2w} - 5)(3w + 4) = 0[/tex]

Use the zero product principle.

[tex]( {2w} - 5) = 0 \: or \: (3w + 4) = 0[/tex]

[tex]{2w} = 5\: or \: 3w = - 4[/tex]

The solution is:

[tex]{w} = \frac{5}{2}\: or \: w = - \frac{4}{3} [/tex]