snaas
contestada

Find the exact value of tan( ([tex]\alpha[/tex] +[tex]\beta[/tex] )

cos [tex]\alpha[/tex] = 2/5 3[tex]\pi[/tex]/2 < [tex]\alpha[/tex] < 2[tex]\pi[/tex] sin[tex]\beta[/tex] = -5/13 [tex]\pi[/tex]<[tex]\beta[/tex] < 3[tex]\pi[/tex]/2

Respuesta :

Answer:

  (1500 -338√21)/51

Step-by-step explanation:

The tangent is related to the cosine by ...

  tan(x) = ±√(1/cos(x)^2 -1)

For a fourth-quadrant angle, the tangent will be negative. So,

  tan(α) = -√((5/2)^2 -1) = -(√21)/2

The tangent is related to the sine by ...

  tan(x) = ±sin(x)/√(1 -sin(x)^2)

For a third-quadrant angle, the tangent will be positive, So,

  tan(β) = (5/13/)√(1 -(5/13)^2) = (5/13)/(12/13) = 5/12

__

The identity for the tangent of the sum of angles tells us ...

  tan(α+β) = (tan(α) +tan(β))/(1 -tan(α)tan(β))

  = (-√21)/2 +5/12)/(1 -(-√21)/2·5/12) = ((-12√21 +10)/24)/(24+5√21)/24)

  = (10 -12√21)(24 -5√21)/(24^2 -25·21)

  tan(α+β) = (1500 -338√21)/51

Answer:

cos  = 2/5 3/2 <  < 2 sin = -5/13 < < 3/2

Step-by-step explanation:

is the best awnser i know