Given that a3 = 12 and a5 = 48, find the explicit rule for the geometric sequence, given that the common ratio is positive

Respuesta :

dhiab

Answer:

hello : q=2

Step-by-step explanation:

look this solution :

Ver imagen dhiab

Answer:

see explanation

Step-by-step explanation:

The n th term of a geometric sequence is

[tex]a_{n}[/tex] = a[tex]r^{n-1}[/tex]

where a is the first term and r the common ratio, thus

[tex]a_{3}[/tex] = ar² = 12 → (1)

[tex]a_{5}[/tex] = a[tex]r^{4}[/tex] = 48 → (2)

Divide (2) by (1)

[tex]\frac{ar^4}{ar^2}[/tex] = [tex]\frac{48}{12}[/tex] = 4

r² = 4 ⇒ r = ± 2 ⇒ r = 2 ← since r > 0

Substitute r = 2 into (1) for corresponding value of a

4a = 12 ⇒ a = 3

Hence

[tex]a_{n}[/tex] = 3[tex](2)^{n-1}[/tex] ← explicit rule