Respuesta :
Answer:
hello : sin(θ) = 4/25
Step-by-step explanation:
you know : cos²(θ) + sin²(θ) =1 and : cos(θ) = - 3/5
(-3/5)² + sin²(θ) =1
9/25 + sin²(θ) =1
sin²(θ) =1 -9/25
sin²(θ) = 16/25
sin(θ) = 4/25 or sin(θ) = - 4/25
in quadrant 2 : sin(θ) > 0
so : sin(θ) = 4/25
Answer:
[tex]sin(theta)=\frac{4}{5}[/tex]
Step-by-step explanation:
if cos theta = -3/5 in quadrant 2, find out sin(theta)
[tex]cos(x)=\frac{-3}{5}[/tex]
cos is negative in second and third quadrant
Here cos is in second quadrant.
Sin is positive in second quadrant .
[tex]cos(x)=\frac{adjacent}{hypotenuse}[/tex]
adjacent side= 3 , hypotenuse = 5
Lets use Pythagorean theorem [tex]c^2=a^2 + b^2[/tex]
[tex]5^2=3^2 + b^2[/tex]
[tex]25=9 + b^2[/tex] Subtract 9 from both sides
[tex]b^2= 16[/tex]
b=4
opposite side = 4
[tex]sin(x)=\frac{opposite}{hypotenuse}[/tex]
[tex]sin(theta)=\frac{4}{5}[/tex]