Respuesta :

gmany

Answer:

[tex]\large\boxed{a=10.92\ and\ b=14.52}[/tex]

Step-by-step explanation:

Step 1:

Calculate a measure of angle C.

We know: The sum of measures of angles in a triangle is equal 180°.

Therefore we have the equation:

[tex]m\angle C+43^o+115^o=180^o[/tex]

[tex]m\angle C+158^o=180^o[/tex]          subtract 158° from both sides

[tex]m\angle C=22^o[/tex]

Step 2:

Use the law of sines to calculate the length a:

[tex]\dfrac{6}{\sin22^o}=\dfrac{a}{\sin43^o}[/tex]

[tex]\sin22^o\approx0.3746\\\\\sin43^o\approx0.6820[/tex]

[tex]\dfrac{6}{0.3746}=\dfrac{a}{0.6820}[/tex]          multiply both sides by 0.6820

[tex]a\approx10.92[/tex]

Step 3:

Use the law of sines to calculate the length b:

[tex]\dfrac{6}{\sin22^o}=\dfrac{b}{\sin115^o}[/tex]

[tex]\sin22^o\approx0.3746[/tex]

To calculate sin115°, use the formula:

[tex]\sin(180^o-\theta)=\sin\theta[/tex]

[tex]\sin115^o=\sin(180^o-65^o)=\sin65^o[/tex]

[tex]\sin65^o\approx0.9063[/tex]

[tex]\dfrac{6}{0.3746}=\dfrac{b}{0.9063}[/tex]         multiply both sides by 0.9063

[tex]b\approx14.52[/tex]

Ver imagen gmany