Respuesta :

Answer:

Part a) The measurement of arc KL is [tex]20\°[/tex]

Part b) The measurement of arc MJ is [tex]80\°[/tex]

Step-by-step explanation:

Let

x--------> the measure of arc KL

y-------> the measure of arc MJ

we know that

The measurement of the outer angle is the semi-difference of the arcs it encompasses.

[tex]m<MEJ=\frac{1}{2}(y-x)[/tex]

substitute the given value

[tex]30\°=\frac{1}{2}(y-x)[/tex]

[tex]60\°=(y-x)[/tex]

[tex]y=60\°+x[/tex] ------> equation A

The measure of the inner angle is the semi-sum of the arcs comprising it and its opposite.

[tex]m<MFJ=\frac{1}{2}(x+y)[/tex]

substitute the given value

[tex]50\°=\frac{1}{2}(x+y)[/tex]

[tex]100\°=(x+y)[/tex]

[tex]y=100\°-x[/tex] ------> equation B

Equate the equation A and B and solve for x

[tex]60\°+x=100\°-x[/tex]

[tex]2x=100\°-60\°[/tex]

[tex]x=20\°[/tex]

Find the value of  y

[tex]y=100\°-20\°=80\°[/tex]

therefore

The measurement of arc KL is [tex]20\°[/tex]

The measurement of arc MJ is [tex]80\°[/tex]

Answer:

20 degrees

Step-by-step explanation:

If you look at the central angles and then look at the other angles further you will see:

5+5=10

1*2=2

10*2=20