Respuesta :
Answer:
Volume of the gas under STP is 84.7 mL.
Assumption: the gas is ideal.
Explanation:
How many moles of particles in this gas?
Convert all units to SI units before applying the ideal gas law.
- The volume shall be in cubic meters: [tex]\displaystyle V = \rm 180\;mL \times \frac{1\;\text{m}^{3}}{10^{6}\;mL} = 1.80\times 10^{-4}\;m^{3}[/tex].
- The temperature shall be in degrees Kelvins: [tex]T =\rm 35.5\;\textdegree{C} = (35.5 + 273.15)\;K = 308.65\;K[/tex]
- The pressure shall be in Pascals: [tex]\displaystyle P = \rm 53.9\;kPa \times \frac{10^{3}\;Pa}{1\;kPa} = 5.39\times 10^{4}\;Pa[/tex].
The ideal gas constant: [tex]R \approx \rm 8.314\;Pa\cdot m^{3}\cdot K^{-1}\cdot mol^{-1}[/tex].
The ideal gas law:
[tex]P \cdot V = n \cdot R\cdot T[/tex]
Rearrange the ideal gas law to find the number of moles of particles [tex]n[/tex] in this gas:
[tex]\displaystyle n = \frac{P\cdot V}{R\cdot T} = \frac{5.39\times 10^{4}\times 1.80\times 10^{-4}}{8.314\times 308.65} = \rm 3.78081\times 10^{-3}\;mol[/tex].
The volume of one mole of an ideal gas under STP is 22.4 liters. The volume of [tex]\rm 3.78081\times 10^{-3}\;mol[/tex] of gas will be:
[tex]\rm 3.78081\times 10^{-3}\;mol\times 22.4\;L\cdot mol^{-1} = 0.0846901\;L = 84.7\; mL[/tex].
All three values in the question come with three significant figures. Keep more significant figures than that in calculations and round the final answer to three significant figures. Hence the answer: 84.7 mL.