Respuesta :

Answer: [tex]cos(\pi-x)=-cos(x)[/tex]

Step-by-step explanation:

We need to apply the following identity:

[tex]cos(A - B) = cos A*cos B + sinA*sin B[/tex]

Then, applying this, you know that for [tex]cos(\pi-x)[/tex]:

[tex]cos(\pi-x)=cos(\pi)*cos(x)+sin(\pi)*sin(x)[/tex]

We need to remember that:

[tex]cos(\pi)=-1[/tex] and [tex]sin(\pi)=0[/tex]

Therefore, we need to substitute these values into [tex]cos(\pi-x)=cos(\pi)*cos(x)+sin(\pi)*sin(x)[/tex].

Then, you get:

[tex]cos(\pi-x)=(-1)*cos(x)+0*sin(x)[/tex]

[tex]cos(\pi-x)=-1cos(x)+0[/tex]

[tex]cos(\pi-x)=-cos(x)[/tex]