contestada

Find the number a such that the line x = a divides the region bounded by the curves x = y^2 − 1 and the y-axis into 2 regions with equal area. Give your answer correct to 3 decimal places.

Respuesta :

[tex]x=y^2-1\implies y=\pm\sqrt{x+1}[/tex]

We want to find [tex]a[/tex] such that

[tex]\displaystyle\int_{-1}^a2\sqrt{x+1}\,\mathrm dx=\int_a^02\sqrt{x+1}\,\mathrm dx[/tex]

On the left,

[tex]\displaystyle\int_{-1}^a2\sqrt{x+1}\,\mathrm dx=4(x+1)^{3/2}\bigg|_{x=-1}^{x=a}=4(a+1)^{3/2}[/tex]

and on the right,

[tex]\displaystyle\int_a^02\sqrt{x+1}\,\mathrm dx=4(x+1)^{3/2}\bigg|_{x=a}^{x=0}=4-4(a+1)^{3/2}[/tex]

For the areas to be equal, we need

[tex]4(a+1)^{3/2}=4-4(a+1)^{3/2}\implies(a+1)^{3/2}=\dfrac12[/tex]

[tex]\implies a=\dfrac1{2^{2/3}}-1\approx-0.370[/tex]