Find all values of the angle θ (in radians, with 0 ≤ θ < 2π) for which the matrix a = cos θ −sin θ sin θ cos θ has real eigenvalues. (enter your answers as a comma-separated list.)

Respuesta :

The matrix

[tex]A=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}[/tex]

has eigenvalues [tex]\lambda[/tex] such that

[tex]\det(A-\lambda I)=\begin{vmatrix}\cos\theta-\lambda&-\sin\theta\\\sin\theta&\cos\theta-\lambda\end{vmatrix}=0[/tex]

[tex](\cos\theta-\lambda)^2+\sin^2\theta=0[/tex]

[tex](\cos\theta-\lambda)^2=-\sin^2\theta[/tex]

[tex]\cos\theta-\lambda=\pm\sqrt{-\sin^2\theta}[/tex]

[tex]\lambda=\cos\theta\pm\sqrt{-\sin^2\theta}[/tex]

[tex]\sin^2\theta\ge0[/tex] for all values of [tex]\theta[/tex], so we need to have [tex]\sin\theta=0[/tex] in order for [tex]\lambda[/tex] to be real-valued. This happens for

[tex]\sin\theta=0\implies\theta=n\pi[/tex]

where [tex]n[/tex] is any integer, and over the given interval we have [tex]\theta=0[/tex] and [tex]\theta=\pi[/tex].