Respuesta :

Answer:

The equation is:

[tex]S=\frac{a_n*r-a_1}{r-1}[/tex]

[tex]S=\frac{\frac{16}{243}*\frac{2}{3}-\frac{1}{3}}{\frac{2}{3}-1}[/tex]

The sum is:

[tex]S=\frac{211}{243}[/tex]

--------------------------------------------------------------------

If the sequence is infinite, the formula is:

[tex]S = \frac{a_1}{1-r}[/tex]

-------------------------------------------------------------------

Step-by-step explanation:

We must calculate the radius of the geometric series

[tex]r =\frac{a_{n+1}}{a_n}\\\\r=\frac{\frac{2}{9}}{\frac{1}{3}}\\\\r=\frac{2}{3}[/tex]

The first term of the series is: [tex]a_1=\frac{1}{3}[/tex]

The last term of the series is: [tex]a_n=\frac{16}{243}[/tex]

If the sequence is finite then the formula is:

[tex]S=\frac{a_n*r-a_1}{r-1}[/tex]

[tex]S=\frac{\frac{16}{243}*\frac{2}{3}-\frac{1}{3}}{\frac{2}{3}-1}[/tex]

[tex]S=\frac{211}{243}[/tex]

If the sequence is infinite then by definition as the radius  are [tex]0 <| r | <1[/tex] then the formula for the sum of the geometric sequence is:

[tex]S = \frac{a_1}{1-r}\\\\S = \frac{\frac{1}{3}}{1-\frac{2}{3}}\\\\S =1[/tex]

Answer:

A

Step-by-step explanation:

got it right on edge