A parallelogram has vertices at (5, 3), (8, 4), (7, 8), and (4, 7). What is the approximate area of the parallelogram?

12 Unit

13 Units

17 Units

27 Units

Please help and show work!!!!! Will mark brainliest!!!!!

Respuesta :

Answer:

13 square units.

Step-by-step explanation:

We can find the area of the parallelogram using the formula:

[tex]Area=2\times \frac{1}{2}[|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|][/tex]

where [tex]A(x_1,y_1)[/tex], [tex]B(x_2,y_2)[/tex]. and [tex]C(x_3,y_3)[/tex] are the vertices of one of the triangles created by the diagonals.

[tex]Area=[|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|][/tex]

We use A(5, 3), B(8, 4), C(7, 8) to obtain:

[tex]Area=[|5(4-8)+8(8-3)+7(3-4)|][/tex]

[tex]Area=[|-20+40-7|][/tex]

[tex]Area=|13|=13[/tex]

The area of the parallelogram is 13 square units.