Respuesta :

Answer:

f(-3) = -5/2

f(-1) = 3/2

f(3) = 3/4

Step-by-step explanation:

To find the values, we just have to replace by the values given (-3, -1, 3).  Since there are different definitions of the function depending on the range of x, we just have to pick the right one before replacing x by its value.

x = -3

When x ≤ -1, the function is 7/2 + 2x

So, x = -3 is certainly  ≤ -1, so....

f(-3) = 7/2 + 2 (-3) = 7/2 - 6 = 7/2 - 12/2 = -5/2

x = -1

When x ≤ -1, the function is 7/2 + 2x

So, we do the same calculation:

f(-1) = 7/2 + 2 (-1) = 7/2 - 2 = 7/2 - 4/2 = 3/2

x = 3

When x ≥ 3, the function is defined as: (1/4)x or x/4.  So,

f(3) = 3/4

Answer:

f(-3)=-2.5 ,

f(-1)=1.5 ,

f(3)=0.75

Step-by-step explanation:

f(-3) means find the value of function f(x) when x=-3

from given restriction we see that x=-3 lies withing [tex]x \leq -1[/tex]

corresponding function value is [tex]f(x)=\frac{7}{2}+2x[/tex]

So plug x=-3 into [tex]f(x)=\frac{7}{2}+2x[/tex]

[tex]f(-3)=\frac{7}{2}+2(-3)=-2.5[/tex]

-------

f(-1) means find the value of function f(x) when x=-1

from given restriction we see that x=-1 lies withing [tex]x \leq -1[/tex]

corresponding function value is [tex]f(x)=\frac{7}{2}+2x[/tex]

So plug x=-1 into [tex]f(x)=\frac{7}{2}+2x[/tex]

[tex]f(-1)=\frac{7}{2}+2(-1)=1.5[/tex]

-------

f(3) means find the value of function f(x) when x=3

from given restriction we see that x=3 lies withing [tex]x \geq 3[/tex]

corresponding function value is [tex]f(x)=\frac{1}{4}x[/tex]

So plug x=3 into [tex]f(x)=\frac{1}{4}x[/tex]

[tex]f(3)=\frac{1}{4}(-3)=0.75[/tex]