Respuesta :

Answer: [tex]x=-\frac{17}{3}[/tex]

Step-by-step explanation:

Given the equation [tex]\frac{(x+5)}{(x+8)}=1+\frac{6}{(x+1)}[/tex], you need to make the addtition indicated on the right side of the equation:

[tex]\frac{(x+5)}{(x+8)}=\frac{(x+1)+6}{(x+1)}\\\\\frac{(x+5)}{(x+8)}=\frac{(x+7)}{(x+1)}[/tex]

Now, multiply both sides of the equation by (x+8) and (x+1):

[tex](x+1)(x+8)\frac{(x+5)}{(x+8)}=\frac{(x+7)}{(x+1)}(x+1)(x+8)\\\\(x+1)(x+5)=(x+7)(x+8)[/tex]

Now, apply Distributive property:

[tex]x^2+5x+x+5=x^2+8x+7x+56[/tex]

Simplifying, you get:

[tex]6x+5=15x+56[/tex]

Subtract 5 and 15x from both sides:

[tex]6x+5-15x-5=15x+56-15x-5\\\\-9x=51[/tex]

Finally, divide both sidesby -9:

[tex]\frac{-9x}{-9}=\frac{51}{-9}\\\\x=-\frac{17}{3}[/tex]