The explicit rule for a sequence is an=5(−2)^n−1
What is the recursive rule for the sequence?
1) an=−2(an+1)
a1=5
2) an=−5(an+1)
a1=2
3) an=−2(an−1)
a1=5
4) an=−5(an−1)
a1=2

Respuesta :

Answer:

3) [tex]a_n=-2a_{n-1}[/tex], [tex]a_1=5[/tex]

Step-by-step explanation:

Given that the explicit rule for a sequence is [tex]a_n=5(-2)^{n-1}[/tex].

Now we need to find about what is the recursive rule for the sequence and match with the given choices to find the correct choice.

1) [tex]a_n=-2a_{n+1}[/tex], [tex]a_1=5[/tex]

2) [tex]a_n=-5a_{n+1}[/tex], [tex]a_1=2[/tex]

3) [tex]a_n=-2a_{n-1}[/tex], [tex]a_1=5[/tex]

4) [tex]a_n=-5a_{n-1}[/tex], [tex]a_1=2[/tex]

Plug n=1 into given formula to get first term

[tex]a_n=5(-2)^{n-1}[/tex]

[tex]a_1=5(-2)^{1-1}=5(-2)^{0}=5(1)=5[/tex]

base of the exponent part is (-2) so that means we need to multiply -2 to the previous term to get nth term

Hence correct choice is: 3) [tex]a_n=-2a_{n-1}[/tex], [tex]a_1=5[/tex]