Respuesta :

Answer:

The vertex is the point (4,3)

Step-by-step explanation:

we have

[tex]y=\frac{3}{4}x^{2}-6x+15[/tex]

Convert to vertex form

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]y-15=\frac{3}{4}x^{2}-6x[/tex]

Factor the leading coefficient

[tex]y-15=\frac{3}{4}(x^{2}-8x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]y-15+12=\frac{3}{4}(x^{2}-8x+16)[/tex]

[tex]y-3=\frac{3}{4}(x^{2}-8x+16)[/tex]

Rewrite as perfect squares

[tex]y-3=\frac{3}{4}(x-4)^{2}[/tex]

[tex]y=\frac{3}{4}(x-4)^{2}+3[/tex] ----> equation in vertex form

The vertex is the point (4,3)