For this case we have the following functions:
[tex]f (x) = 2x ^ 2-18\\g (x) = - 3x-7[/tex]
We must find:
[tex](f-g) (2)[/tex]
By definition, we have to:
[tex](f-g) (x) = f (x) -g (x)[/tex]
So:
[tex](f-g) (x) = 2x ^ 2-18 - (- 3x-7)\\(f-g) (x) = 2x ^ 2-18 + 3x + 7\\(f-g) (x) = 2x ^ 2 + 3x-11[/tex]
Then, we evaluate in x = 2:
[tex](f-g) (2) = 2 (2) ^ 2 + 3 (2) -11\\(f-g) (2) = 2 (4) + 6-11\\(f-g) (2) = 8 + 6-11\\(f-g) (2) = 8 + 6-11\\(f-g) (2) = 3[/tex]
ANswer:
[tex](f-g) (2) = 3[/tex]