Respuesta :

Answer:

[tex]\frac{\tan 60\degree}{\cos45 \degree}= \sqrt{6}[/tex]

Step-by-step explanation:

We want to evaluate

[tex]\frac{\tan 60\degree}{\cos45 \degree}[/tex]

We use special angles or the unit circle to obtain;

[tex]\frac{\tan 60\degree}{\cos45 \degree}=\frac{\sqrt{3}}{\frac{\sqrt{2}}{2}}[/tex]

This implies that;

[tex]\frac{\tan 60\degree}{\cos45 \degree}=\sqrt{3}\div \frac{\sqrt{2}}{2}[/tex]

[tex]\frac{\tan 60\degree}{\cos45 \degree}=\sqrt{3}\times \sqrt{2}[/tex]

[tex]\frac{\tan 60\degree}{\cos45 \degree}= \sqrt{6}[/tex]

Answer:

[tex]\sqrt{6}[/tex].

Step-by-step explanation:

[tex]\frac{tan(60)}{cos(45)}[/tex]

[tex]= \frac{\frac{sin(60)}{cos(60)}}{cos(45)}[/tex]

[tex]= \frac{sin(60)}{cos(60)*cos(45)}[/tex]

[tex]= \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}*\frac{\sqrt{2}}{2}}[/tex]

[tex]= \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{4}}[/tex]

[tex]= \frac{4\sqrt{3}}{2\sqrt{2}}[/tex]

[tex]= \frac{2\sqrt{3}}{\sqrt{2}}[/tex]

[tex]= \frac{2\sqrt{3}\sqrt{2}}{2}[/tex]

[tex]=\sqrt{3}\sqrt{2}[/tex]

[tex]=\sqrt{6}[/tex].