Respuesta :

Answer:

[tex]t=7.4years[/tex]

Step-by-step explanation:

Let's clear t from the equation [tex]N=16.10^{0.15t}[/tex]. In order to clear t, we have to apply [tex]log_{10} (x)[/tex] in both side of the equations.

[tex]log_{10}N=log_{10}(16.10)^{0.15t}[/tex]

By using properties of the logarithm

[tex]log_{10} (a.b)}= log_{10}a+log_{10}b[/tex]

We obtain:

[tex]log_{10}N=log_{10}(16)+log_{10} (10^{0.15t})[/tex]

Ordering using the logarithm property  [tex]log_{10}a^{n} =nlog_{10}a[/tex] and [tex]log_{10} 10=1[/tex]

[tex]log_{10}N=log_{10}(16)+0.15tlog_{10}10[/tex]  

[tex]log_{10}N=log_{10}(16)+0.15t[/tex]

Clearing t

[tex]t=\frac{log_{10}N-log_{10}(16)}{0.15}[/tex] using the logarith property [tex]log_{10}a-log_{10}b=log_{10}\frac{a}{b}[/tex]

we obtain:

[tex]t=\frac{log_{10}\frac{N}{16} }{0.15}[/tex]

The number of Elm trees is N = 204

Solving

[tex]t=\frac{log_{10}\frac{204}{16} }{0.15}\\t=\frac{log_{10}12.75}{0.15}=7.370[/tex]

Round to the nearest tenths place [tex]t=7.4years[/tex]