Respuesta :

Answer:

The area of the table is [tex]1,008\ in^{2}[/tex]

Step-by-step explanation:

Let

x----> the length of the rectangular table

y---> the width of the rectangular table

we know that

The perimeter is equal to

[tex]P=2(x+y)[/tex]

[tex]P=132\ in[/tex]

so

[tex]132=2(x+y)[/tex]

[tex]66=x+y[/tex] ------> equation A

[tex]x=1\frac{3}{4}y[/tex]

[tex]x=\frac{1*4+3}{4}y[/tex]

[tex]x=\frac{7}{4}y[/tex] ---> equation B

substitute equation B in equation A and solve for y

[tex]66=\frac{7}{4}y+y[/tex]

[tex]66=\frac{11}{4}y[/tex]

[tex]y=66*4/11=24\ in[/tex]

Find the value of x

[tex]x=\frac{7}{4}(24)=42\ in[/tex]

Find the area of the table

The area is equal to

[tex]A=xy=(42)(24)=1,008\ in^{2}[/tex]