You stand at point C and look at an aquarium tank. Calculate the radius of the aquarium tank.

Answer:
The radius of the aquarium tank is [tex]8.25\ ft[/tex]
Step-by-step explanation:
we know that
Applying the Tangent Secant Theorem
[tex]DC^{2}=AC*8[/tex]
we have that
[tex]AC=(D+8)\ ft[/tex]
[tex]DC=14\ ft[/tex]
substitute
[tex]14^{2}=(D+8)*8[/tex]
[tex]196=8D+64[/tex]
Solve for D
[tex]8D=196-64[/tex]
[tex]8D=132[/tex]
[tex]D=16.5\ ft[/tex]
Find the radius
The radius is half the diameter
[tex]r=16.5/2=8.25\ ft[/tex]
Answer:
8.25
Step-by-step explanation:
DC = 14ft
AC = 8ft + the diametre
Lets use d for diametre
The equation we are using is the Segments of Secants and Tangents Theorem, which is [tex]DC^{2}[/tex] = 8ft (or the outside segment) * AC (the whole segment)
[tex]14^{2}[/tex] = 8 * (8 + d)
196 = 64 + 8d
Subtract 64 from 196 to get: 132 = 8d
Divide 8 from 132 to get: d = 16.5
Now the diametre is 16.5, but the radius is half the diametre, so now you have to do: 16.5 / 2
So the radius would end up being 8.25