Respuesta :

ANSWER

[tex]x = - \frac{2\pi}{3} [/tex]

EXPLANATION

The given function has equation

[tex]y = \tan( \frac{3}{4}x) [/tex]

This can be rewritten as

[tex]y = \frac{ \sin( \frac{3}{4}x ) } { \cos(\frac{3}{4}x )}[/tex]

The asymptote occurs at:

[tex]\cos(\frac{3}{4}x ) = 0[/tex]

This implies that,

[tex] \frac{3}{4} x = \frac{ \pi}{2} [/tex]

[tex]x = \frac{ \pi}{2} \times \frac{4}{3} [/tex]

[tex]x = \frac{2\pi}{3} [/tex]

Or

[tex]\frac{3}{4} x = - \frac{ \pi}{2} [/tex]

[tex]x = \frac{ - \pi}{2} \times \frac{4}{3} [/tex]

[tex]x = - \frac{2\pi}{3} [/tex]

The second choice is correct.

Answer:

B) [tex]x = \frac{2\pi }{3}[/tex]

Step-by-step explanation:

this is the correct answer on ed-genuity, hope this helps! :)