Find the number a such that the line x = a bisects the area under the curve y = 1/x2 for 1 ≤ x ≤ 4. 8 5​ (b) find the number b such that the line y = b bisects the area in part (a).

Respuesta :

a. We're looking for [tex]a[/tex] such that

[tex]\displaystyle\int_1^a\frac{\mathrm dx}{x^2}=\int_a^4\frac{\mathrm dx}{x^2}[/tex]

[tex]-\dfrac1x\bigg|_{x=1}^{x=a}=-\dfrac1x\bigg|_{x=a}^{x=4}[/tex]

[tex]1-\dfrac1a=\dfrac1a-\dfrac14[/tex]

[tex]\dfrac54=\dfrac2a\implies\boxed{a=\dfrac85}[/tex]

b. Integrating with respect to [tex]y[/tex] will make things easier.

[tex]y=\dfrac1{x^2}\implies x=\dfrac1{\sqrt y}[/tex]

(where we take the positive square root because we know [tex]x>0[/tex])

Now we want to find [tex]b[/tex] such that

[tex]\displaystyle\int_0^b\frac{\mathrm dy}{\sqrt y}=\int_b^1\frac{\mathrm dy}{\sqrt y}[/tex]

[tex]2\sqrt y\bigg|_{y=0}^{y=b}=2\sqrt y\bigg|_{y=b}^{b=1}[/tex]

[tex]2\sqrt b=2-2\sqrt b[/tex]

[tex]4\sqrt b=2\implies\boxed{b=\dfrac14}[/tex]

The area under a curve is function of the definite integral between the points under the curve.

  • The value of a is 8/5
  • The value of b is 1/4

(a) Find a

To do this, we make use of:

[tex]\mathbf{\int\limits^a_1 \frac{dx}{x^2} = \int\limits^4_a \frac{dx}{x^2}}[/tex]

Rewrite as:

[tex]\mathbf{\int\limits^a_1 x^{-2} \ dx = \int\limits^4_a x^{-2} \ dx }[/tex]

Integrate

[tex]\mathbf{ -x^{-1}|\limits^a_1 = -x^{-1}|\limits^4_a }[/tex]

Expand

[tex]\mathbf{ (-a^{-1}) -(-1^{-1}) = (-4^{-1}) -(-a^{-1})}[/tex]

[tex]\mathbf{ -\frac 1a +1 = -0.25 + \frac{1}{a} }[/tex]

Collect like terms

[tex]\mathbf{ \frac 1a + \frac{1}{a} =1 +0.25 }[/tex]

[tex]\mathbf{ \frac 1a + \frac{1}{a} =1.25 }[/tex]

Take LCM

[tex]\mathbf{ \frac{1+1}{a} =1.25 }[/tex]

[tex]\mathbf{ \frac{2}{a} =1.25 }[/tex]

Inverse both sides

[tex]\mathbf{ \frac{a}{2} =\frac{1}{1.25} }[/tex]

Multiply both sides by 2

[tex]\mathbf{ a =\frac{2}{1.25} }[/tex]

Simplify

[tex]\mathbf{ a =\frac{8}{5} }[/tex]

(b) Find b

In (a), we have:

[tex]\mathbf{y = \frac{1}{x^2}}[/tex]

Multiply both sides by x^2

[tex]\mathbf{x^2y = 1}[/tex]

Divide through by y

[tex]\mathbf{x^2 = \frac 1y}[/tex]

Take square roots

[tex]\mathbf{x = \frac {1}{\sqrt{y}}}[/tex]

So, the definite integral is:

[tex]\mathbf{\int\limits^b_0 \frac{dy}{\sqrt y} = \int\limits^1_b \frac{dy}{\sqrt y}}[/tex]

Rewrite as:

[tex]\mathbf{\int\limits^b_0 y^{-\frac 12}dy = \int\limits^1_b y^{-\frac 12}dy }[/tex]

Integrate

[tex]\mathbf{2y^{\frac 12}|\limits^b_0 = 2y^{\frac 12}|\limits^1_b}[/tex]

Expand

[tex]\mathbf{2(b^{\frac 12} - 0^{\frac 12}) = 2(1^{\frac 12} - b^{\frac 12})}[/tex]

[tex]\mathbf{2(b^{\frac 12} ) = 2(1 - b^{\frac 12})}[/tex]

Divide through by 2

[tex]\mathbf{b^{\frac 12} = 1 - b^{\frac 12}}[/tex]

Collect like terms

[tex]\mathbf{b^{\frac 12} + b^{\frac 12} = 1 }[/tex]

[tex]\mathbf{2b^{\frac 12} = 1 }[/tex]

Divide through by 2

[tex]\mathbf{b^{\frac 12} = \frac 12 }[/tex]

Square both sides

[tex]\mathbf{b = \frac 14 }[/tex]

Hence, the value of b is 1/4

Read more about areas under curves at:

https://brainly.com/question/19466582