Respuesta :

Answer:

see explanation

Step-by-step explanation:

The n th term of a geometric progression is

• [tex]a_{n}[/tex] = a₁ [tex]r^{n-1}[/tex]

where a₁ is the first term and r the common ratio

given a₄ = 24, then

a₁[tex]r^{3}[/tex] = 24 → (1)

Given a₈ = [tex]\frac{8}{27}[/tex], then

a₁[tex]r^{7}[/tex] = [tex]\frac{8}{27}[/tex] → (2)

Divide (2) by (1)

[tex]r^{4}[/tex] = [tex]\frac{\frac{8}{27} }{24}[/tex] = [tex]\frac{1}{81}[/tex]

Hence r = [tex]\sqrt[4]{\frac{1}{81} }[/tex] = [tex]\frac{1}{3}[/tex]

Substitute this value into (1)

a₁ × ([tex]\frac{1}{3}[/tex] )³ = 24

a₁ × [tex]\frac{1}{27}[/tex] = 24, hence

a₁ = 24 × 27 = 648